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A simple approach is developed to calculate shock compression of simple 
molecules. This approach is based upon an accurate analytic representation of 
the Lennard-Jones fluids in conjunction with the Enskog theory, which is used 
to calculate the molecular diameter as a function of temperature along the 
Hugoniot. The model permits rapid, yet reliable calculations. It is applied to N2, 
02, H2, D2, CH4, CO, and CO2. The results are tested by the comparison with 
experimental data and with other calculations. The computed Hugoniots agree 
reasonably with experimental results for many (but not all) simple molecules 
and are comparable to those of more complicated models. 

KEY WORDS: Shock compression; simple molecules, dense fluids; Lennard- 
Jones; Enskog theory. 

1. I N T R O D U C T I O N  

The molecular species CO2, CO, 02,  N2, H2, and CH4 constitute most of 
the detonation products of the majority of explosives used in practice and 
in experimental investigations/~) If the different dynamic and ther- 
modynamic aspects of the pure components of explosives are defined at 
high pressures and densities (conditions attained by shock compression), 
the properties of the aggregate could be predicted. The determination of 
shock parameters that are used to determine the initiation process and the 
detonation hazards requires knowing the shock Hugoniot  of the unreacted 
explosive. Also, shock compression analysis of H2 and D2 is of great 
importance in modeling planetary interiors and fusion problems. 

Shock compression of the above-mentioned simple molecules is also of 
particular theoretical interest. Modern theories of statistical mechanics can 
be applied to them to perform reasonably rigorous calculations. 

A large body of experimental data on shock compression of simple 
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molecules is now available. (2 5) However, for a fundamental understanding 
of the physical behavior of these molecules under the extreme conditions of 
high temperatures and densities, reliable theoretical calculations that 
assume realistic intermolecular potentials are required. Many attempts (6-~2~ 
have been made to construct such rigorous calculations. The approach is 
usually based upon the assumption of the additivity of intermolecular 
energy of isolated pairs and fluid perturbation theory. 

The fact that the liquid structure is primarily determined by the short- 
range repulsive force and the relatively long-range attractive part suggested 
that the fluid can be treated as a system of molecules governed by a 
repulsive potential and an attractive part that can be treated as a small per- 
turbation. Among the best perturbation theories are those of Barker and 
Henderson (BH) and Weeks, Chandler, and Anderson (WCA). (~3) These 
theories, however, use the hard-sphere potential as a reference system, 
which introduces repulsion that tends to be severe at high density and tem- 
perature, i.e., at small separation. In order to overcome this difficulty, 
Ross (7) used a variational perturbation technique that employs the softer 
inverse 12th power repulsion as the reference potential to calculate shock 
compression of argon. His calculations were compared with experimental 
data and used to assess the accuracy of the repulsive potential of argon. He 
reproduced the shock data of liquid argon using the exponential-six (exp-6) 
potential with the parameters ~ --- 13.0, elk = 122 K, and r* = 3.85 ~. 

Using the corresponding state theory in conjunction with the 
parameters r* and elk for argon, Ross and Ree (9) gave a simple recipe to 
evaluate the parameters r* and e/k for N 2, 02, CO, CO2, and CH 4. They 
also discussed the possibility that the repulsive pair potential of these fluids 
scale in accordance with the "law of corresponding state." They found that 
this law to be approximately valid to a compression of about 2.5 times 
liquid density. 

It is often the case in such theoretical modeling of shock compression 
of simple molecules that investigators attempt to determine individually the 
relevant pair potential for each molecular species with the parameters that 
produce the experimental Hugoniot data. In the present calculations an 
analytic representation of the thermodynamic data for Lennard-Jones (LJ) 
fluids developed by Hansen ~14) and Ree ~15) is used to calculate shock com- 
pressions of simple molecules. 

Although this relatively simple expression fits "experimental" ther- 
modynamic data quite well over a wide range of density and temperature 
and permits a rapid evaluation of thermodynamic quantities, the Lennard- 
Jones potential tends to be very stiff at small separations. Consequently, 
shock compression calculations based upon this expression diverge severely 
at high densities, predicting much higher pressures. 
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In order to overcome this difficulty and take advantage of the con- 
venience of using an analytic form for the equation of state, we introduced 
the Enskog theory to calculate the "collisional" separation a as a function 
of temperature along the Hugoniot. This idea was inspired by the fact that, 
at high temperatures, molecules approach and scatter at much smaller dis- 
tances. Therefore, it makes sense to think about the separation distance as 
being a function of temperature instead of treating it as a constant 
parameter along the Hugoniot. In fact, the Enskog theory provides such a 
functional dependence quite nicely in terms of a simple analytic expression. 
Therefore, the object of the present work is to present a simple, yet reliable 
approach for rapid computational calculations of shock compression for 
simple molecules. Also, the study sheds further light on the nature of the 
intermolecular forces at conditions attained by shock waves. 

It is worth saying that this approach is quite applicable to other 
spherical potentials, e.g., exp-6. In fact, calculations that employ the same 
idea in conjunction with the fluid variational perturbation theory and the 
exp-6 potential are in progress. 

In the next section we present the theoretical formulation of the model. 
Section 3 is devoted to presentation and discussion of the results. Section 4 
provides a brief summary. 

2. T H E O R E T I C A L  F O R M U L A T I O N  

The passage of a shock wave through matter produces a large increase 
in its density, temperature, and pressure. In a typical shock experiment 
these thermodynamic quantities are not directly measurable. The Hugoniot 
data are generated by performing a series of experiments that measure 
shock velocity U, and particle or material velocity Up. 

The thermodynamic and hydrodynamic states in the cold and hot 
sides of the shock front are related through the conservation relations. For 
a coordinate system moving with the shock, these relations are 

poUo = Pl U1 

Po + poU~= P1 + Pl U~ 

Eo + Po/Po + l 2 ~U o =E~ + PffPl + �89 U2 

(mass) (1) 

(momentum) (2) 

(energy) (3) 

where U o = U, and UI = U~.- Up. Here, E, P, and p are, respectively, the 
total specific internal energy (energy per unit mass), pressure, and density. 
Subscript 0 refers to the initial (cold) state and subscript 1 refers to the 
final (hot) state. 
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Eliminating the velocities from the above relations leads to the 
Hugoniot relation 

E~ - Eo = �89 + P)( V0 - Vl ) (4) 

where V is the specific volume (V= 1/p). The Hugoniot relation gives the 
locus of all possible final states of compression for a given initial state. 

The application of the hydrodynamic theory to the determination of 
the shock Hugoniot requires a complete thermodynamic description of the 
molecular system. A useful representation of fluid properties can be based 
upon the Lennard-Jones (6-12) potential 

O ( r )  = 4eE ( a / r )  12 - (r 6 ] (5) 

where e is the depth of the potential and o- is the "collisional" separation 
distance at which the potential vanishes. 

Based upon this potential, Hansen (14) and Ree Ils) developed the 
following expression for pressure: 

5 5 

~P/p=flPrep/p-(1/T*) 1/2 ~ iC,Xi+(1/T *) ~ D~X ~ (6) 
i = 1  i - - 1  

where 

flPrep/P = 1 + BIX+ B2X 2 + B3 X3 + B4 X4 + Blo XL~ 

where /~ = 1/kT and X = p * / T  .1/4, where p * =  _•a3/V and T* =kT/e. The 
first two terms of the above expression are those of Hansen, who treated 
the repulsive part of the LJ potential 4e(g/r) 12 as the reference potential 
and the attractive part as a perturbation. The first term in Eq. (6) 
corresponds to the repulsive reference potential and the second term 
represents the leading high-temperature correction of the attraction. Han- 
sen's values for the least-square fit are B1-=3.629, B2=7.2641, 
B3 = 10.4924, B 4 = 11.459, Blo = 2.17619, C1 = 5.3692, C2 = 6.5797, 
C3 = 6.1745, C4 = -4.2685, and C5 = 1.6841. His expression [the first two 
terms of Eq. (6)] is in excellent agreement with the exact Monte Carlo 
computations down to about twice the critical temperature (T* = 2.75). By 
including the low-temperature Monte Carlo and molecular dynamics data, 
Ree (15) extended the range of the LJ equation of state to about the triple 
point (T* =0.68). The third term in Eq. (6) is Ree's contribution. Ree's 
values for the fitting parameters are D I = - 3 . 4 9 2 1 ,  D2=18.6980, 
D3=-35.5049,  D4=31.8151, and D5=-11.1953.  The Hansen-Ree 
equation of state was very useful in calculating the wave structure of dense- 
fluid detonation (16) and detonation performance. (~7) 
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In spite of the convenience of the analytic property and usefulness of 
the Hansen-Ree equation of state, its main failing is that it bears the same 
property of stiffness and inflexibility as the Lennard-Jones potential at 
small separations. In order to overcome this difficulty, the Enskog 
theory (18~ is used to calculate the "collision" separation a as a function of 
temperature along the Hugoniot. 

In dense fluids made up of molecules of finite size, the frequency of 
collision is increased by a factor Y from that of a dilute gas made up of 
molecules whose molecular diameter a is small compared to the mean free 
path. Enskog suggested that the equation of state of a dense fluid be writ- 
ten in the form 

P V / R T =  1 + (bo/V) Y (7) 

where bo = ~7~No "3. 

Although the above formula was obtained for a gas composed of rigid 
spherical molecules, Enskog showed that it can be applied to real 
molecules if the pressure in Eq. (7) is replaced by the thermal pressure, 
which is given by 

Pth = T(OP/•T)v = (OE/OV)T+ P (8) 

i.e., Enskog supposed that the real, dense gas is equivalent to a rigid-sphere 
gas in which the external pressure is replaced by the thermal pressure. 

It is more convenient to redefine the factor Y as y=(bo /V)Y.  
Therefore 

y = (1/ptcT)[T(OP/OT)v- 1] 

Since y/p ~ bo as p ~ 0, then 

bo = B(T) + T(dB/dT) (9) 

where B(T) is the second virial coefficient. It is worth noticing that bo is 
equal to the second virial coefficient when the system is composed of rigid 
spherical molecules, while with the inclusion of thermal pressure, an 
additional term T(dB/dT) is added as a Taylor expansion term. 

From Eq. (9) an expression for the molecular diameter as a function 
of temperature is directly obtained as 

c~( T) = { ( 3/2~zN)[ B( T) + T( dB/dT) ] }1/3 (10) 

From the equation of state (6), one immediately gets an expression for the 
second virial coefficient: 

B*( T* ) = ( 3/2~)( B1/T .1/4 - CI /T  .3/4 + D ~/T .5/4) (11) 
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Then,  from the above  two equat ions  we have 

a(r*)/a = [(3/8~)(3B1/T *~/4- C1/T*3/4-- D1/T*5/4)]l/3 (12) 

Equation (12) gives the sphere diameter in reduced units as a function of 
the reduced temperature. In Eq. (12), a is considered as the reference 
diameter obtained from viscosity data in the temperature range 
300-1000 K. (is) 

The Hugon io t  calculat ions  are s t r ight forward  because bo th  the initial  
and  final states are equi l ibr ium states. F r o m  the equa t ion  of state (6) and  
Eq, (8) an expression for the excess in ternal  energy (after subt rac t ing  the 
dilute gas con t r ibu t ion)  in terms of densi ty  and t empera tu re  can be 
obtained,  The  di lute  gas con t r ibu t ion  to the in ternal  energy is given by 

n 
Edi I ----- ~ 3 R T + ~  R T  + R i s  1 (-~J--[ O vi 

= exp(O~i/T) 1) 

where n is the number of rotational degrees of freedom (two for linear 
molecules and three for nonlinear molecules). The third term in the above 
expression represents the vibrational energy, where Ov is the characteristic 
vibrational temperature (Ov=hv/k) and ~ is the number of vibrational 
degrees of freedom. Values for Ov are listed in Table [.(19) Changes in the 
vibrational frequencies on compression are neglected. 

Having both P and E in terms of p and T, one obtains the Hugoniot 
relation in terms of p and T. By choosing any value of p greater than P0, 
one can solve for T by searching for the zero of the function 

F(T) = �89 + Po)( 1/po - 1 / p ) -  ( E -  Eo) 

Table I. "Reference" Potential Parameters and Characteristic 
Vibrational Temperature 

(]~)~ elk (K) ~ 0,, (K) 

N2 
02 
H2 
D2 
CH 4 
CO 
CO2 

3.749 79.8 3374 b 
3.541 88.0 2273 c 
2.915 38.0 6340 d 
2.948 39.3 4395 a 
3.796 1 4 4 . 0  4170;2180(2);4320(3);1870(3) c 
3.706 88.0 3122 c 
3.897 213.0 1890;3360;954(2) c 

a Reference 18. 
b Reference 19. 

Reference 9. 
d Reference 12. 
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The input value for a(T)  is varied along the Hugoniot until it matches the 
value predicted from Eq. (12). Values for a evaluated from viscosity (18) are 
taken as the reference values. These values for different species are listed in 
Table I. 

3. RESULTS A N D  D ISCUSSION 

Equations (11) and (12) are used to calculate the reduced second virial 
coefficient B*(T*) and the reduced sphere diameter a(T*)/a as a function 
of the reduced temperature. Figures 1 and 2 along with Table II show 
these calculations compared with values of B*(T*) given in Table IB of 
Hirschfelder et al. (18) and with values of a(T*)/~ calculated from the same 
table. The two calculations are almost indistinguishable over a wide range 
of the reduced temperature. The second virial coefficient shown in Fig. 1 is 
negative at low temperatures and starts to change its sign at T * =  3.875. It 
increases from large, negative values to positive, but with decreasing slope. 
It passes through a maximum at T* =28.51 and then decreases slightly 
with increasing T*. The behavior of the second virial coefficient reflects the 
nature of the intermolecular potential. At low temperature, the con- 
tribution from the attractive part of the potential is important, while as the 
temperature increases, the repulsive part tends to be dominant. 
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Fig. 1. Second virial coefficient in reduced units versus reduced temperature as calculated by 
( - - )  HR-EOS compared with that from (--)  HCB. 
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Sphere diameter in reduced units versus reduced temperature as calculated by ( - - )  
HR-EOS compared with that from (- -) HCB. 

Table II. The Second Virial Coeff icient and Sphere Diameter  in Reduced 
Units versus Reduced Temperature as Calculated by Hansen-Ree (HR)  

Equation of State and Those from Hirschfelder et  al. (HCB)  

B~: ( T* ) a(  T* )/a 

T* 
HR HCB HR HCB 

2 -0 .7683 0.6276 0.9608 1.0021 
4 0.0241 0.1154 0.9150 0.9190 
6 0.2608 0.3229 0,8911 0.8908 
8 0.3674 0.4134 0.8746 0.8732 

10 0.4247 0.4609 0.8619 0.8603 
20 0.5089 0.5253 0.8226 0.8213 
30 0.5166 0.5269 0.7996 0.7986 
40 0.5112 0.5186 0.7833 0.7826 
50 0.5027 0.5084 0.7707 0.7705 
60 0.4937 0.4982 0.7604 0.7599 
70 0.4849 0.4887 0.7518 0.7501 
80 0.4766 0.4798 0.7443 0.7439 
90 0.4688 0.4716 03377 0.7374 

100 0.4616 0.4641 0,7319 0.7316 
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In Fig. 2 the reduced molecular diameter shows a fast decrease with 
T* until about T* ~ 20. Then it starts to be a slowly decreasing function of 
temperature. This monotonic decrease of a(T*)/a as the temperature 
increases reflects the fact that at high temperature, molecules approach and 
scatter at much smaller distances. 

Based upon a virial expansion in density and taking the reference state 
as a hard-sphere gas represented by the Percus-Yevick equation of state, 
Haar and Shenker (2~ an expression for the sphere diameter as a 
function of temperature. Their calculations for a(T*)/~ as function of T* 
indicate that the sphere diameter is also a monotone decreasing function of 
the temperature. 

The close agreement between our calculations and those from 
Hirschfelder et al. and the results of Haar and Shenker lead to confidence 
in our simple approach. 

3.1. Nitrogen 

The Hugoniot  data for both N2 and 0 2 a r e  presented as Us versus Up 
and P versus V/V o plots. In Fig. 3 the calculated Us versus Up Hugoniot 
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Liquid N 2 Hugoniot; shock velocity versus mass velocity. 
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for N 2 is plotted along with the experimental data of Nellis and Mitchell (3) 
and Zubarev and Telegin,(2) where the initial state was 
(P0, To)= (0.808 g/cm 3, 77.4K). The same figure shows the theoretical 
calculations of Johnson et al., (21) who used a scaled atom-atom (exp-6) 
potential with molecular dynamics. They produced an extensive set of 
molecular dynamics runs establishing the equation of state for dense N 2. 
They also demonstrated the existence of an effective spherical potential that 
models very accurately the equation of state of the anisotropic N2 poten- 
tial. The comparison with the experimental data and with Johnson's work 
shows a reasonable overall agreement. 

Since a linear U, versus Up relationship is observed, the data were fit- 
ted by a linear least square fit to the relation 

~:s= C + SUp (13) 

Our data fit Us= 1.91 + 1.20Up in the range 2.19< Up<8.31 km/sec and 
the two sets of experimental data (2'31 fit to U, = 2.09 + 1.17Up in the range 
1.17 < Up < 7.54 km/sec. 

Since an infinitely weak shock is considered as a sound wave, then as 
Up ~ 0, C in Eq. (13) should be equal to the speed of sound. However, the 
intercept with the Us axis defined by Eq. (13) predicts a higher value (see 
Fig. 3). 

In Fig. 4 the P versus V/V o relation calculated with the present 
approach (using the Hansen-Ree equation of state and Enskog theory) is 
plotted along with the experimental results of Nellis and Mitchell (3) and 
Zubarev and Telegin/2) The figure also shows the Hugoniot curve 
calculated by Ross and Ree (9) and that calculated by the Hansen-Ree 
equation of state with constant Lennard-Jones parameters (o = 3.64 ~, and 
elk = 101.9 KI22/). 

As Fig. 4 indicates, the Hugoniot calculations based upon the Han- 
sen Ree equation of state with constant LJ parameters (curve 1 in Fig. 4) 
deviate drastically from the experimental data, predicting much higher 
pressure at high densities. This reflects the stiffness and inflexibility of the 
Lennard-Jones potential. However, when the shock compression 
calculations are refined by allowing a to be a function of the temperature 
along the Hugoniot using Enskog theory, the disagreement is noticeably 
reduced (curve 3 in Fig. 4). Our calculations are in a good agreement with 
the experimental data of Zubarev and Telegin up to about 150 kbar. In the 
range V/Vo = 0.425 to 0.375 our calculations predict slightly lower pressure. 
Then the calculations return to a good agreement with the experimental 
work of Nellis and Mitchell up to about 650 kbar. 

Shock compression calculations of Ross and Ree based upon a 
corresponding state law in conjunction with the exp-6 intermolecular 
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0,6 

potential appear to agree well with the experimental data up to a pressure 
of 400kbar. Above this pressure their calculations deviate sharply, 
predicting higher pressure (curve 2 in Fig. 4). They suggested that this 
divergence is probably due to the dissociation of N 2 molecules. Our 
calculations gave an estimated total internal energy to be 3.43 x 10 17 j per 
molecule at P ~ 4 4 0  kbar, while the dissociation energy of N2 is about 
1.6 x 10 18 j per molecule. (23) This supports the conclusion of Ross and 
Ree. 

Comparison between esperimental T versus P data of Voskoboinikov 
et  al. ~24) and different theoretical calculations is made in Fig. 5. As the 
figure indicates, both theory and experiment reveal an approximately linear 
T versus P relationship. However, our calculations and those of Ross and 
Ree deviate at higher pressures, predicting higher temperatures, while those 
of Johnson et  a lJ  21) are in good agreement with experiment. Their 
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300 

calculations are based upon the Mansoori Canfield-Ross fluid pertur- 
bation theory (25) assuming an effective spherical (exp-6) potential for N2. 
The best effective spherical potential for N2 was obtained by taking the 
median average over angles. The present model and that of Ross and Ree 
are adequate for spherically symmetric systems. 

3.2. Oxygen 

The shock Hugoniot for oxygen in the Us versus Up plane is depicted 
in Fig. 6, where the present calculations are compared with the experimen- 
tal work of Nellis and Mitchell and of Wackerle et a/. (3) Our results fit 
U,=2.143+l.184Up in the range 1.66<Up<7.24km/sec, while the 
experimental data give Us = 2.327 + 1.215Up for 2.6 < Up < 6.8 km/sec. 

In Fig. 7 the calculated shock Hugoniot along with the experimental 
data (3) are plotted in the P versus V/Vo plane. As the figure indicates, the 
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theoretical Hugoniot curve is located slightly lower than the experimental 
Hugoniot curve. This suggests that a slight adjustment of the reference 
Lennard-Jones parameters for 02 (~r= 3.541/~ and e/k= 88 K (18)) would 
bring the calculated and the experimental curves into better agreement. 

The temperature versus pressure relation for 02 as calculated by the 
present model along with those calculated by Ross and Ree (9) are shown in 
Fig. 8. The two calculations reveal an approximately linear relationship. 
However, as the pressure increases, our model predicts higher temperature. 

3.3.  H y d r o g e n  a n d  D e u t e r i u m  

Ross et al. (12) used recent shock data to determine an improved effec- 
tive intermolecular potential and an equation of state for molecular 
hydrogen valid over a broad range of conditions. They analyzed the shock 
compression data using several different potentials. Through these analyses, 
they found a simple three-parameter potential that can explain the 
experimental data for H2 quite well. This potential has the form of the 
exp-6 with the parameters t /k= 36.41, r* =3.43 ~, and c~= 11.1. 

The thermodynamic properties were calculated using the Helmholtz 
free energy based upon the fluid variational theory. The expression for the 
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Helmholtz free energy contains an expression for the hard-sphere excess 
free energy. The hard-sphere diameter was treated as the only variational 
parameter, which was determined by minimizing the Helmholtz free energy. 

Using the initial state (Vo, To) = (28.422 cma/mole, 20.35 K) for H2 
and (V 0, To)= (23.64 cm3/mole, 20K) for D2, their shock Hugoniot 
calculations for H2 and D2 agree satisfactorily with the experimental data 
over the entire experimental range. 

Applying the same procedure used for N 2 and 0 2 (namely, adjusting 
the parameter ~r along the Hugoniot so that its value matches that predic- 
ted by the Enskog theory) to H 2 and D 2 produced poor results (about 
25-45% difference in pressure over the experimental range(3)). These dif- 
ficulties are attributable to the fact that H 2 molecular interactions in the 
condensed phase contain an essential many-body contribution. The persent 
model is based upon the second virial coefficient and consequently con- 
cerns mainly two-body molecular interactions. Therefore, instead of 
calculating the shock Hugoniot for H2 and D 2, we compare three different 
theoretical calculations (Figs. 9 and 10) for the reduced "sphere diameter" 
versus reduced temperature: (i) those values of ~r(T*)/~ that are required to 
match the experimental data, (ii) those calculated using the Enskog theory, 
and (iii) values of hard-sphere diameter calculated by Ross et al. along 
the Hugoniot through the minimization of the Helmholtz free energy. To 
transfer temperature and "sphere diameter" into reduced values, the pair 
potential parameters used are (a,e/k)=(2.915I~, 38K) for H 2 and 
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Ig0 

(a, e/k)= (2.948 ~, 39.3 K) for D2 .(18) The ideal gas contribution to the 
internal energy was taken to be 3.5RT for both H2 and D2. 

As both figures indicate, the three calculations show a monotone 
decrease of a(T*)/a as T* increases. However, the curve corresponding to 
matching the experimental data is almost parallel to that computed by the 
Enskog theory, while that computed by Ross etaL (12) decreases a little 
faster than the other two. 

3.4. Methane 

The calculated Us versus Up shock Hugoniot of liquid CH 4 along with 
the experimental data of Nellis et a/. (4) are illustrated in Fig. 11. The initial 
state for these calculations is (Vo, To) = (37.94 cm3/mole, 111.3 K). 

As the comparison indicates, the Hugoniot calculated using this simple 
approach is in a good agreement with the experimental data. The 
experimental data fit U , = 2 . 6 2 5 +  1.200Up in the range 2.222< Up< 
8.341 km/sec, while the present calculations fit U s = 2.893 + 1.153Up in the 
range 2.415 < Up < 8.066 km/sec. 

In Fig. 12 the P versus V/Vo Hugoniot for C H  4 calculated with the 
present approach is compared with that calculated by Ross and Ree using 
the corresponding state theory. ~ The experimental data are also shown. 
As the figure indicates, our calculations agree closely with the experimental 
data. However, the Hugoniot calculated by Ross and Ree agrees with the 
experimental Hugoniot up to about 230 kbar and then starts to deviate, 
predicting much higher pressure. They suggested that the reason behind the 
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deviation is the tendency of C H  4 t o  dissociate into elemental carbon and 
molecular hydrogen at these conditions. 

Our calculations for the temperature versus pressure relation are com- 
pared with those calculated by Ross and Ree in Fig. 13. Both calculations 
reveal an approximately linear relationship. 

3.5. Carbon Monox ide  

The P - V  Hugoniot for CO calculated with the present approach 
(curve 4 in Fig. 14) is superimposed on top of the calculations of Nellis et 

a/. (4) in Fig. 14. Their experimental data are also shown. 
It has been suggested (4) that CO at high temperature and pressure 

decomposes into gaseous species and elemental carbon. Therefore, Nellis et  

al. proposed three different theoretical Hugoniots: Hugoniot 1 in Fig. 14 
represents the nonreactive case calculated by the corresponding state 
theory; Hugoniot 2 allows chemical reactions, but without the formation of 
the diamond phase; and Hugoniot 3 assumes complete chemical 
equilibrium where the formation of both graphite and diamond phases are 
permitted. Their analysis utilizes three gaseous products (CO, CO2, and 
02) and two solid phases (graphite and diamond). 
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At low pressure (up to about 100 kbar) the experimental data are 
close to the nonreactive Hugoniots (curves 1 and 4 in Fig. 14). Our 
calculations assume that molecules do not dissociate. As the pressure 
increases, our calculations become closer to the experimental results than 
do Hugoniots ! and 2 of Nellis e t  al. In the pressure range 250-500 kbar 
the experimental data are closer to Hugoniot 3, while at higher pressure 
(600-700 kbar) they lie between Hugoniots 3 and 4. 

The present calculations predict the early dissociation of CO. The 
pronounced deviation between the calculations (nonreactive Hugoniots 1 
and 4 in Fig. 14) and experimental data is probably due to the existence of 
many different species (three gaseous products and two solid phases); the 
anisotropy permits closer packing of molecules. 

The temperature versus pressure relation calculated with the present 
approach is also superimposed on top of the calculations of Nellis e t  al. (4) 

in Fig. 15. As the figure indicates, curve 3, which assumes the existence of 
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theoretical models. 

graphite and diamond, exhibits curvature at the high-pressure end. The 
other calculations (including ours) reveal an approximately linear 
relationship. 

3.6. Carbon Dioxide 

For carbond dioxide, the experimental work of Zubarev and Telegin ~2) 
is the only available experimental data. The initial state they used is 

Table III. Exper imenta l  CO 2 H u g o n i o t  of Zubarev and Telegin w i t h  the  
Cor rec t  Pressure and Densi ty  

Up (km/sec) Us (km/sec) p(g/cm 3) P (kbar) 

1.03 3.57 2.19 57.2 
2.14 5.38 2.59 179.6 
3.68 7.71 2.98 441.9 
4.79 9.05 3.31 675.5 
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(Po, To)= (1.56 g/cm 3, 196 K). This state corresponds to solid phase near 
the sublimation point at 1 atm. 

As Ross and Ree (9) noticed, the Hugoniot pressure and density 
calculated by Zubarev and Telegin using their experimental data for shock 
and particle velocity are incorrect. They used an initial density of about 
1.45 g/cm 3, while the correct value is 1.56 g/cm 3. Therefore, to compare the 
present calculations with the correct experimental data we recalculated 
pressure and density using the experimental data for Us and Up with the 
initial state (V0, To)= (1.56 g/cm 3, 196K). These data are depicted in 
Table III. 

By varying cr so that it matches the value predicted by the Enskog 
theory, we found that for CO2, in particular, cr is almost constant along the 
Hugoniot. The Lennard-Jones parameters that produce good agreement 
with the experimental results are (elk, a) = (213 K, 3.53 ~). This value for 
is about 9% less than its value obtained from viscosity. (18) 

The Hugoniot calculated with these parameters is presented as U~ ver- 
sus Up and P versus V/Vo plots in Figs. 16 and 17, respectively. The 
experimental data of Zubarev and Telegin are also shown. As the figures 
indicate, the calculations are in good agreement with the experiment. The 
Us versus Up calculations fit Us= 1.85 + 1.54Uo, in the range 
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Fig. 16. Solid C O  2 H u g o n i o t ;  s h o c k  veloci ty  versus  mass  velocity.  
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1.63 < Up < 5.15 km/sec, while the experimental data fit U s = 2.16 + 1.47U, 
in the range 1.03 < Up < 4.79 km/sec. 

In Fig. 18, the temperature versus pressure relation calculated with the 
present approach is compared with that calculated by Ross and Ree using 
the corresponding state theory. (9~ The two calculations are almost identical. 
They both reveal an approximately linear relationship. 

4. CONCLUSION 

The fact that at high temperature, molecules approach and scatter at 
much smaller distances led to the idea of applying the Enskog theory to 
calculate the molecular diameter as a function of temperature along the 
Hugoniot. In conjunction with an accurate analytic represention of the 
Lennard-Jones fluid, we have presented a simple, yet reliable recipe to 
calculate shock compression of simple molecules. Results are in reasonable 
agreement with experimental data and comparable to those from more 
complicated calculations. However, the limitation of this approach is the 
requirement of accurate values for the "reference" potential parameters. 
The model is adequate to describe spherically symmetric systems and 
works better when the molecular interactions are mainly two-body interac- 
tions. 
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